Modeling lower mantle anisotropy development in a subducting slab
نویسندگان
چکیده
A model is presented that simulates anisotropy development in a subducting slab from the upper–lower mantle boundary (661 km) to the core–mantle boundary (2891 km). Two phases are considered: orthorhombic MgSiO3-perovskite and cubic magnesiowuestite (Mg,Fe)O. Single crystal elastic properties at mantle conditions are obtained from existing density functional theory calculations and quasiharmonic approximation. It is assumed that deformation is accommodated by slip. A polycrystal plasticity model predicts strong texture development for perovskite and weaker texture for magnesiowuestite. When averaging single crystal elastic properties with the orientation distribution this results for both phases in weak P-wave anisotropy and shear wave splitting in the upper part of the lower mantle but pronounced anisotropy near the core–mantle boundary (up to 4% for Vp and 7% for Vs). The anisotropy pattern is complex and asymmetric and local heterogeneity is expected. These predictions are consistent with seismic observations. © 2006 Elsevier B.V. All rights reserved.
منابع مشابه
Frequency-dependent shear wave splitting beneath the Japan and Izu-Bonin subduction zones
Despite its importance for ourunderstandingof physical processes associatedwith subduction, the geometry of mantle flow in subduction zones remains poorly understood, particularly in the mantle wedge above subducting slabs. Constraints onmantle flowanddeformation canbeobtainedbymeasurements of shearwave splitting, a valuable tool used to characterize the geometry and strength of seismic anisotr...
متن کاملEffects of change in slab geometry on the mantle flow and slab fabric in Southern Peru
The effects of complex slab geometries on the surrounding mantle flow field are still poorly understood. Here we combine shear wave velocity structure with Rayleigh wave phase anisotropy to examine these effects in southern Peru, where the slab changes its geometry from steep to flat. To the south, where the slab subducts steeply, we find trench-parallel anisotropy beneath the active volcanic a...
متن کاملConstraints on Subduction Geodynamics from Seismic Anisotropy
[1] Much progress has been made over the past several decades in delineating the structure of subducting slabs, but several key aspects of their dynamics remain poorly constrained. Major unsolved problems in subduction geodynamics include those related to mantle wedge viscosity and rheology, slab hydration and dehydration, mechanical coupling between slabs and the ambient mantle, the geometry o...
متن کاملTesting models of sub-slab anisotropy using a global compilation of source-side shear wave splitting data
Recently, a number of source-side shear wave splitting measurements that directly constrain anisotropy in the upper mantle beneath subducting slabs have been published. Such measurements have yielded an observational foundation on which to base our understanding of the dynamics of the sub-slab mantle. Here we compile measurements from recent studies of source-side splitting beneath slabs that e...
متن کاملSub-slab anisotropy beneath the Sumatra and circum-Pacific subduction zones from source-side shear wave splitting observations
Understanding the dynamics of subduction is critical to our overall understanding of plate tectonics and the solid Earth system. Observations of seismic anisotropy can yield constraints on deformation patterns in the mantle surrounding subducting slabs, providing a tool for studying subduction dynamics. While many observations of seismic anisotropy have been made in subduction systems, our unde...
متن کامل